A mass formula for unimodular lattices with no roots

نویسنده

  • Oliver D. King
چکیده

We derive a mass formula for n-dimensional unimodular lattices having any prescribed root system. We use Katsurada’s formula for the Fourier coefficients of Siegel Eisenstein series to compute these masses for all root systems of even unimodular 32-dimensional lattices and odd unimodular lattices of dimension n ≤ 30. In particular, we find the mass of even unimodular 32dimensional lattices with no roots, and the mass of odd unimodular lattices with no roots in dimension n ≤ 30, verifying Bacher and Venkov’s enumerations in dimensions 27 and 28. We also compute better lower bounds on the number of inequivalent unimodular lattices in dimensions 26 to 30 than those afforded by the Minkowski-Siegel mass constants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Optimal Unimodular Lattices

The highest possible minimal norm of a unimodular lattice is determined in dimensions n ≤ 33. There are precisely five odd 32-dimensional lattices with the highest possible minimal norm (compared with more than 8.1020 in dimension 33). Unimodular lattices with no roots exist if and only if n ≥ 23, n 6= 25.

متن کامل

On the classification of even unimodular lattices with a complex structure

This paper classifies the even unimodular lattices that have a structure as a Hermitian OK-lattice of rank r ≤ 12 for rings of integers in imaginary quadratic number fields K of class number 1. The Hermitian theta series of such a lattice is a Hermitian modular form of weight r for the full modular group, therefore we call them theta lattices. For arbitrary imaginary quadratic fields we derive ...

متن کامل

Unimodular lattices in dimensions 14 and 15 over the Eisenstein integers

All indecomposable unimodular hermitian lattices in dimensions 14 and 15 over the ring of integers in Q( √ −3) are determined. Precisely one lattice in dimension 14 and two lattices in dimension 15 have minimal norm 3. In 1978 W. Feit [10] classified the unimodular hermitian lattices of dimensions up to 12 over the ring Z[ω] of Eisenstein integers, where ω is a primitive third root of unity. Th...

متن کامل

Pieces of 2 d : Existence and uniqueness for

We give a new existence proof for the rank 2d even lattices usually called the Barnes-Wall lattices, and establish new results on uniqueness, structure and transitivity of the automorphism group on certain kinds of sublattices. Our proofs are relatively free of calculations, matrix work and counting, due to the uniqueness viewpoint. We deduce the labeling of coordinates on which earlier constru...

متن کامل

Root Polytopes and Growth Series of Root Lattices

The convex hull of the roots of a classical root lattice is called a root polytope. We determine explicit unimodular triangulations of the boundaries of the root polytopes associated to the root lattices An, Cn and Dn, and compute their f -and h-vectors. This leads us to recover formulae for the growth series of these root lattices, which were first conjectured by Conway–Mallows–Sloane and Baak...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2003